Montessori, a bold life breaking boundaries

Grave of Maria Montessori in Noordwijk, The Ne...

Grave of Maria Montessori in Noordwijk, The Netherlands (Photo credit: Wikipedia)

Italian educationist Maria Montessori (1870-1952)

Italian educationist Maria Montessori (1870-1952) (Photo credit: Wikipedia)

Montessori education

Montessori education (Photo credit: Wikipedia)

Today on Montessori’s birthday – we recall a force for good, where children can and do interact with their environment. Was this the birth of  environmental education – NAEEUK?

Maria Montessori (August 31, 1870 – May 6, 1952) was an Italian physician and educator, a noted humanitarian and devout Catholic best known for the philosophy of education that bears her name. Her educational method is in use today in public and private schools throughout the world.

In this first classroom, Montessori observed behaviors in these young children which formed the foundation of her educational method. She noted episodes of deep attention and concentration, multiple repetitions of activity, and a sensitivity to order in the environment. Given free choice of activity, the children showed more interest in practical activities and Montessori’s materials than in toys provided for them, and were surprisingly unmotivated by sweets and other rewards. Over time, she saw a spontaneous self-discipline emerge.[26]

Based on her observations, Montessori implemented a number of practices that became hallmarks of her educational philosophy and method. She replaced the heavy furniture with child-sized tables and chairs light enough for the children to move, and placed child-sized materials on low, accessible shelves. She expanded the range of practical activities such as sweeping and personal care to include a wide variety of exercises for care of the environment and the self, including flower arranging, hand washing, gymnastics, care of pets, and cooking. She continued to adapt and refine the materials she had developed earlier, altering or removing exercises which were chosen less frequently by the children. Also based on her observations, Montessori experimented with allowing children free choice of the materials, uninterrupted work, and freedom of movement and activity within the limits set by the environment. She began to see independence as the aim of education, and the role of the teacher as an observer and director of children’s innate psychological development. 

Source :

Links : |!/mariamontessori |

Darwin’s tree of life brought into the future

A new project aims to bring Charles Darwin’s masterclass on evolution into this century. Carl Zimmer of The New York Times reports 




A tree of life connects species 

In 1837, Charles Darwin opened a notebook and drew a simple tree. Each branch represented aspecies. In that doodle, he captured his newfound realization that species were related, havingevolved from a common ancestor. Across the top of the page he wrote, “I think.”

Two decades later Darwin presented a detailed account of the tree of life in “On the Origin ofSpecies.” And much of evolutionary biology since then has been dedicated to illuminating parts ofthe tree. Using DNA, fossils and other clues, scientists have worked out the relationships of manygroups of organisms, making rough sketches of the entire tree of life.

“Animals and fungi are in one part of the tree, and plants are far away in another part,” said LauraA. Katz, an evolutionary biologist at Smith College in Northampton, Massachusetts.


 A tree of life connects species

Scientists want to create a single tree of life out of thousands. An updated model, and Darwin’s effort. Cambridge University Library; Iplant Collaborative,top


Now Dr. Katz and her colleagues are doing somethingnew: they are drawing a tree of life that includes everyknown species – a tree with about two million branches.

“I think it is an amazing step forward for our communityif it can be pulled off,” said Robert P. Guralnick, an expert on evolutionary trees at the University of Colorado who is not part of the project.

Until recently, a complete tree of life would have beeninconceivable. To figure out how species are related,scientists inspect each possible way they could berelated. With each additional species, the total numberof possible trees explodes. There are more possible trees for just 25 species than there are stars.

But scientists have developed computer programs thatfind the most likely relationship among species without considering every possible arrangement. Thosecomputers can now analyze tens of thousands ofspecies at a time.

Yet these studies have thrown spotlights on only smallportions of the tree of life.

“Nobody has tried to put all these results together,” saidthe leader of the new effort, Karen Cranston, a biologistat the National Evolutionary Synthesis Center in Durham, North Carolina.

Last year, Dr. Cranston and other experts came up witha plan for a single tree of life. The National Science Foundation has awarded the team a three-year grant of$5.7 million. The project, the Open Tree of Life, hopes to publish a draft by August 2013. The scientists willgrab tens of thousands of evolutionary trees archived online, then graft the smaller trees into a single big one.

These trees represent just a tiny fraction of all known species. The rest are classified in the oldLinnaean system, in which they are assigned to a genus, a family, a kingdom, and so on. The teamwill use that data too. All the species in a genus, for example, will belong to branches descendingfrom the same common ancestor. The Linnaean system will give the tree only a rough picture ofthe true relationships among species.

“Parts of it will be quite good, and parts will be quite bad,” Dr. Cranston said.

The team will then set up an Internet portal where the entire community of evolutionary scientistscan upload new studies, which can then automatically revise the entire tree.

And the tree will grow. Each year scientists publish descriptions of 17,000 new species. Last yeara team estimated the total number of species to be 8.7 million, although others think it could easilybe 10 times that.

When scientists publish the details of a new species, they typically compare it with known speciesto determine its closest relatives. They will be able to upload this new information into the OpenTree of Life. Scientists who extract DNA from the environment from previously unknown species willbe able to add their information as well.

Animals and plants will take up only a tiny part of the tree. “Most biodiversity on earth is microbial,”said Dr. Katz.

Microbes pose a special challenge. The branches of the tree of life represent how organisms passtheir genes to their descendants. But microbes also transfer genes among one another. Thosetransfers can join branches separated by billions of years of evolution.

“In a lot of the tree of life, it’s not really treelike,” Dr. Cranston said.

She and her colleagues are exploring how they can build their database to include these genetransfers, and how best to visualize them.

“That’s an issue we intend to struggle with for the next three years,” Dr. Katz said.

Luke Harmon, an evolutionary biologist at the University of Idaho who is not involved in the project,looks forward to using the tree to explore the history of life. One major question evolutionarybiologists have long explored is why evolution runs at different speeds in different lineages.


A tree of life connects species

“We can use the tree to identify evolutionary ‘bangs’ and’whimpers’ through the history of life,” said Dr. Harmon said. It may also be possible to see how climate change has driven extinctions, and to make predictions for the future.

Stephen A. Smith, a team member from the University ofMichigan, hopes that the Open Tree of Life will allowscientists to tackle some major questions.

The tree may be able to guide the search for new drugs,for example. Scientists trying to treat infectious bacteria could search for the fungi that makeantibiotics that are effective against it. The relatives of those fungi might make even more effectivedrugs.

“These are questions we can ask now,” Dr. Smith said. “But we don’t have all the data together toanswer them yet.”

Roderic D. M. Page, a professor of taxonomy at the University of Glasgow, called the Open Tree ofLife team “first class,” but added: “Displaying large trees is a hard problem that has so far resistedsolution. We are still waiting for the equivalent of a Google Maps.”

Source : New York Times



Worldwide Nepalese Students’ Organization together with the Nepali Youth Task Force on Rio+20 is organizing Kathmandu+20 – a wider gathering of Nepalese Youth on 24-25th May 2012 in Kathmandu, Nepal as part of the international project “MyCity+20” (

In the run-up to the United Nations Conference on Sustainable Development (also known as Rio+20) in Rio de Janeiro this June, young people around the globe want to share their views on the future of their planet. Youth are eager to get involved in the decision-making process and learn and apply key issues surrounding sustainable development and the emerging global frameworks for sustainable socio-economic and environmental development as well as inter generational equity.

We are organizing a 2-days long Conference where we will interact with the experts, negotiators and government officials working on Rio+20. This event also aims to hold the simulation of the summit.

Kathmandu+20 is a youth led initiative aiming…

View original post 152 more words

After the tsunami, a new variety of rice

Location of Miyagi Tokyo=Metropolis

Location of Miyagi Tokyo=Metropolis (Photo credit: Wikipedia)

Toshiharu Ota, a rice farmer in Miyagi Prefecture in northeastern Japan, survived theearthquake, tsunami and nuclear disaster last year. But his fields were devastated by the saltdeposits left behind when the tsunami’s floodwaters receded. China Daily reports.

Salt damage can cut the yield of a rice crop in half.

Now, to help farmers like Mr. Ota, a research team is working to develop a salt-tolerant variety ofrice.

“With the rice variety we’re developing we should see the yield only drop by 20 percent,” saidTomoko Abe at Riken, a research organization. “We should also see less fragmented rice.”

The tsunami’s waves, up to 40 meters high, engulfed the coastline around Ishinomaki City, whereMr. Ota lives, devastating hundreds of thousands of lives and washing away whole sections oftowns and farmland. Miyagi Prefecture estimated the cost of damage to agricultural land andfacilities at $4.6 billion, making it one of the prefectures hardest hit economically by the disaster.

Rice has traditionally been a leading crop in northeastern Japan. Miyagi Prefecture’s 2010 harvestfetched $818 million. But last year the harvested rice acreage fell short of target by 4,600 hectares.In total, 11 percent of the prefecture’s farmland was damaged.

Mr. Ota, who farmed 11 hectares of rice paddies, said nearly half were flooded. Local workershave labored hard to remove salt from the soil in the past year.

“Even with desalination, the yield has dropped,” said Mr. Ota, 56.

Once dissolved into the soil, salt is hard to remove. It tends to stick to other elements and comesout only when plant roots emit an acid that breaks away minerals, including sodium chloride, to beabsorbed by the plant, he said.

The salt-tolerant rice project involves heavy ion beam technology developed by Riken.

Mainly used in nuclear physics and also in medical applications like cancer treatment, heavy ionbeam technology was first applied by Riken to speed up mutations in plants in 1989. Ms. Abe,research group director of accelerator applications at Riken, helped to develop the world’s first salt-tolerant rice variety, based on the Nipponbare rice strain, in 2006.

For the current project, grains of two popular rice varieties, Hitomebore and Manamusume, havebeen exposed to heavy ion beams generated by a particle accelerator.

“We’ve had success in developing one variety of salt-resistant rice, although this variety doesn’ttaste that great,” said Ms. Abe.

There are only six ion beam accelerator facilities for plant breeding in the world, and four of themare in Japan.

In the year since the tsunami, about 5,250 hectares of farmland in Miyagi Prefecture have beendesalinated, including rice paddies. The prefecture aims to clean up an additional 4,100 hectaresthis year and a final 3,650 hectares in 2013.

Salt-tolerant rice varieties could also help the region cope with land subsidence. Miyagi andsurrounding coastal farmlands now face a higher risk of saltwater damage, experts say, becausethe earthquake’s seismic shift caused large parts of northeastern Japan to sink.

Mr. Ota’s farmland has sunk by about 80 centimeters. Closer to the epicenter, the subsidence isgreater. Oshika Peninsula, just a short drive away, was the closest place to the epicenter of theoffshore quake. Land there sank by 1.2 meters and slid horizontally eastward by 5.3 meters,according to the Geospatial Information Authority of Japan.

“We’re not dealing with just seawater but also flooding from storms,” Mr. Ota said. “We have asharp increase in drainage water that lingers on our farmland.”

Being able to grow a sodium-tolerant variety of rice may determine whether some farmers cancontinue to stay in agriculture, said Kazuhisa Matsunaga, who works for Zen-noh Miyagi, anagricultural cooperative.

Some coastal farmlands have dropped almost to sea level. “It would make a difference for them tobe able to continue farming using a variety that would be forgiving to soil that has some sodiumleft,” Mr. Matsunaga said.

Takashi Endo, a researcher in Miyagi Prefecture, said it could take two years to develop a salt-resistant variety and another two years to grow enough seeds to bring it to commercial scale.

“We hope that our research results will be a bright spot for farmers affected by the disaster,” Mr.Endo said.

The New York Times